

Losing Trick

Count

1. What is the Losing Trick Count?

- It is a method of hand evaluation.
- It does not replace the High Card Point system of evaluating hands, but rather supplements it.
- The Losing Trick Count method (LTC) assists in estimating the trick-taking potential of a partnership's two hands.
- LTC answers the question: How many tricks are we going to win?
- LTC doesn't offer a 100\% guarantee, however it is surprisingly accurate most of the time.

2. When to use the Losing Trick Count method:

- Use it after you and partner have found your trump fit.
- Use it when trying to decide whether to bid to game, small slam or grand slam.
- Do not use it in No Trump auctions.
- LTC is not suitable for misfit hands.

3. Looking at losers:

- What is the value of this hand?
- Hand A: \approx : A

V: 7
\leftarrow AKQ9876432
/: 6

- If you bring out the 4-3-2-1 High Card Point method and say that this hand is worth 13 points, you need to rethink your methods.
- The correct way to view this hand is in terms of winners and losers. The hand has 11 winners and two losers, one each in hearts and clubs.
- You clearly can produce 11 tricks playing in diamonds. All you need to know is whether partner can cover none, one or both of the losing tricks. The Blackwood convention will clearly this up quickly.

4. Looking at the Losing Trick Count method:

- The LTC method uses a technique just like in the Hand A example, although the winner and loser count isn't usually so clear cut.
- LTC will enable us to gauge the playing strength of our own hand.
- Then we will assess the trick-taking ability of our partner's hand, based on his bids.
- We will put the two together and arrive at the estimate of the number of tricks we will take. And most of the time our answer will be exactly right!

5. The LTC Formula:

- Here is the simple LTC Formula:

1) Count your losers
2) Add partner's losers
3) Deduct this total from 24

- The answer is the number of tricks the partnership can make.
- The LTC answer is the number of tricks you can expect to win if suits break normally and half of your finesses work.
- Simple, isn't it?

6. Counting your losers:

- Here's how to get your loser count:
- Only the first three cards in a suit can be losers.
- With three or more cards in a suit,
- Count the A, K and Q as winners; anything lower is a loser.
- With two cards in a suit,
- Count the A and K as winners; anything lower is a loser.
- With one card in a suit,
- Count the A as a winner; anything lower is a loser.
- There are never more than three losers in a suit.
- There are never more losers in a suit than the number of cards in the suit.

7. Try these examples to test yourself:

Holding	Losers	Holding	Losers
J 109	3	8764	3
A 64	2	A 643	2
K 86	2	K J 9	2
K Q 5	1	AK 9	1
A K Q	0	A Q 73	1
109874	3	J 3	2
Q 6	2	Q J	2
A 6	1	K	1
K Q	1	A K	0
A	0	void	0

8. As your points increase, your losers decrease. As your points decrease, your losers increase. Let's look at some complete hands.

- Hand B: \approx : AK64 $=1$ loser

マ: KQ93 = 1 loser
$\leftarrow \mathrm{J} 3$ = 2 losers
$\frac{1: 432}{13 \text { points }}=\frac{3 \text { losers }}{7 \text { losers }}$

- Hand C: \approx : AK64 $=1$ loser
v: KQ93 = 1 loser
\leftarrow A9 $\quad=1$ losers
1:432 $=3$ losers
16 points 6 losers
－Hand D：玉：AK64＝ 1 loser
v：KQ93＝ 1 loser
\leftarrow A9 $=1$ losers
／：K32 $=2$ losers
19 points 5 losers
－Hand E：\approx ：AK64 $=1$ loser
マ：KQ93＝ 1 loser
\leftarrow AK $\quad 0$ losers
1：K32＝ 2 losers
22 points 4 losers
9．The more unbalanced your hand，the fewer the losers．
The more balanced the hand，the more losers．
Let＇s see how that works in some sample hands．
－Hand F：$\approx:$ AK64
＝ 1 loser
V：KQ93
＝ 1 loser
$\leftarrow \mathrm{J} 3$＝ 2 losers
1：432 $=3$ losers
13 points
7 losers
－Hand G：\approx ：AK642＝ 1 loser
『：KQ93＝ 1 loser
$\leftarrow \mathrm{J} 3$＝ 2 losers
$\frac{1: 43}{13 \text { points }}=\frac{2 \text { losers }}{6 \text { losers }}$
－Hand H：\approx ：AK642＝ 1 loser
v：KQ932＝ 1 loser
$\leftarrow \mathrm{J} 3=2$ losers
$1: 4=1$ losers

13 points
5 losers
－Hand I：\approx ：AK6542 $=1$ loser
అ：KQ932＝ 1 loser
\leftarrow J3＝ 2 losers
$\frac{1:-}{13 \text { points }}=\frac{0 \text { losers }}{4 \text { losers }}$
10. Assessing your partner's losers:

- It's easy to count the losers in your own hand. But how are you supposed to know how many losers your partner is looking at?
- Answer: You infer partner's loser count based on the strength shown by his bids.
- Points Description of Strength Expected \# of losers
- Opening bids:
- 13-15 Minimum opening bid 7 losers
- 15-17 1 No Trump opening bid 6 losers
- 18-19 Strong No Trump rebid 5 losers
- 20 + Very Strong Opening 4 losers
- 22+ Demand Opening 3-4 losers
- 6-10 Weak Two Bid 8 losers
- Responses:
- 6-9 Single raise

9 losers

- 6 + New suit at 1-level 9 losers
- 10-11 Limit raise 8 losers
- 12 + Game forcing response 7 losers

11. Let's try a few examples:

12. Subtracting from 24 :

- Now that we know the loser count for both of us, add the two numbers and subtract from 24. The answer is the number of tricks we should be able to take.
- Example:

Hand J:	You	Partner	You
	AQ7	1 *	1 V
	QKJ72	$3 \vee$?
	-654		
	\&Q765		

Your partner's strength is one better than minimum, therefore 6 losers. You have 9 losers. Subtract (6+9) from 24 = 9 tricks. So you pass.

- Why subtract from 24? Because we're only counting the first 3 tricks in each suit. Or looking at all four suits, we're looking at 12 possible tricks. In both hands, twice 12 is 24. Any losers should be subtracted from 24.
- Thus, maximum possible losers (24) - actual losers = tricks expected.

13. Let's look at some pairs of hands and bid them:

West

- Hand K: $\approx:$ AQ75

V: 96
\leftarrow AKJ62
/ : K9

$\frac{\text { West }}{}$
$1 \leftarrow$
$4 \approx$
5 『

East

Hand L: $\approx:$ K108643
V: 7
$\leftarrow 43$
/: A842

East

1 ~
4 NT
$6 \approx$

Pass
West has 5 losers and East has 7 losers. East realizes that partner has a 5 loser hand once he jumps to $4 \approx$. So he knows it is right to try for slam since $24-(5+7)=12$ expected tricks.

West

- Hand M: $\approx: K$ Q864

V: K8
\leftarrow QJ3
/: A65
West
$1 \approx$
3 NT

East
Hand $N: \approx:$ AJ1032
V: Q76
\leftarrow A65
/: K3
East
2 NT (Jacoby)
4 ~

Pass
West has 6 losers and East has 7 losers. West can show that he is one loser less than a minimum opening bid by rebidding 3 NT. East can now add West's 6 loser count to his own 7 losers. $24-(6+7)=11$ tricks, so East signs off at game, realizing that small slam is not likely.
14. Let Losing Trick Count be your friend! When faced with close bidding decisions about going to game or slam or not, do your LTC calculation to figure out how high to bid. You will be pleased with your improved accuracy. You'll be a winner and partner will love you even more than before. Enjoy!

